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TÓM TẮT 

Thành phần chất khí trong công nghiệp hóa học thường chứa các khí argon, nitơ, 

cacbon monoxit và clo. Sự phát thải trực tiếp các khí này vào khí quyển cần phải 

được hạn chế do tác động của chúng với môi trường. Để tách và lưu trữ chúng, 

chúng ta cần phải biết đầy đủ tính chất tương tác giữa các phân tử. Hệ số virial bậc 

hai đặc trưng cho tính chất tương tác phân tử. Bài báo sử dụng mô hình mạng thần 

kinh kết hợp phân tích thành phần chính ANN-PCA I(5)-HL(6)-O(3) với giá trị sai 

số MSE là 0,0069695 để dự đoán các hệ số a, b và c trong phương trình trạng thái 

virial dựa vào các tính chất tới hạn của các chất khí. Hệ số virial bậc hai được xác 

định một cách chính xác sử dụng các hệ số a, b và c được dự đoán. Hệ số virial tính 

toán cũng rất gần với các hệ số virial dự đoán từ của phương trình thạng thái 

Deiters và phù hợp với dữ liệu thực nghiệm.    

Từ khóa: Mạng thần kinh ANN, hệ số virial, phương trình trạng thái virial, phân 

tích thành phần chính. 

 

I. GIỚI THIỆU 

Mô phỏng máy tính đã trở thành những công cụ không thể thiếu để nghiên cứu 

những chất lỏng và hỗn hợp chất lỏng. Kỹ thuật mô phỏng có thể tính toán các tính 

chất cấu trúc và nhiệt động học cũng như sự chuyển động của phân tử, hệ số virial là 

một tham số quan trọng về sự tương tác phân tử để đánh giá chất lượng tham số hàm 

thế tối ưu [[1]]. Kỹ thuật mô phỏng Monte Carlo cũng như động học phân tử, không 

thể thực hiện nếu không có thông tin đầu vào [[3]]. Thông thường có thể sử dụng một 

hàm thế đơn giản [[2]] như hàm thế cặp Lennard-Jones, có thể được sử dụng để khớp 
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với dữ liệu thực nghiệm tạo ra các tham số, và sau đó sử dụng để tiến hành mô phỏng 

[[4]]. Mô phỏng như vậy cho dự báo không lâu hơn, bởi vì quá trình mô phỏng cần 

thông tin đi vào cùng một tính chất giống nhau. Điều này cũng có thể là một hạn chế, 

cụ thể là nếu dữ liệu thực nghiệm không đủ [[5]]. 

Các kỹ thuật mô phỏng toàn cục đã được thực hiện cho các loại khí hiếm, mà 

hiện nay có thể được sử dụng để dự đoán cân bằng pha lỏng hơi mà không đòi hỏi dữ 

liệu thực nghiệm, cho kết quả với độ chính xác tương đương trong khoảng không chắc 

chắn của thực nghiệm [[8],[9],[11]]. Một trong những nỗ lực đầu tiên đạt được độ chính 

xác gần với thực nghiệm là các nghiên cứu của Deiters, Hloucha và Leonhard [[5],[6]] 

đối với khí neon. Sự tiến xa hơn trong các nỗ lực mô phỏng toàn cục của các chất khí 

hiếm đã công bố bởi nhóm Eggenberger và Huber [[7]-[10]] và Sandler [[11]]. Sử dụng 

một dạng hàm thế cho các thế khuếch tán của argon và krypton được đưa ra bởi 

Korona [[12]]; Nasrabad và Deiters thậm chí còn dự đoán cân bằng pha lỏng hơi ở áp 

suất cao của hỗn hợp khí hiếm [[13]]. Các hàm thế cặp của hỗn hợp các khí hiếm khác 

đã được López Cacheiro công bố [[14],[7]], nhưng vẫn chưa được sử dụng cho dự đoán 

cân bằng pha.  

Phát triển các hàm thế cặp ab initio cho các phân tử phức tạp hơn nhiều do độ 

tự do của góc giữa các phân tử thay đổi. Đối với một số phân tử đơn giản những hàm 

thế này đã được xây dựng bởi Leonhard và Deiters [[5]] khi sử dụng hàm thế Morse 

với 5 vị trí, để biểu diễn tương tác cặp của các phân tử nitơ và đã dự đoán được áp suất 

và tỷ trọng hơi. Bock cũng đã đưa ra một thế cặp 5 vị trí cho phân tử CO2 [[16]]; Ngoài 

ra các hàm thế tương tác bậc 2 có thể tiếp tục được hiệu chỉnh lượng tử bậc nhất cho 

các hệ số virial bậc 2 được Pack phát triển [[15]]. Naicker đã sử dụng lý thuyết nhiễu 

loạn đối xứng (SAPT) để phát triển một thế cặp tương tác 3 vị trí cho phân tử HCl 

[[11]], dựa trên cơ sở hàm thế Korona và một hàm thế Morse; nhóm của Naicker đã dự 

đoán thành công cân bằng pha lỏng hơi của HCl bằng mô phỏng Monte Carlo [[4]-

[19],[20]].  

Việc tìm kiếm các phương pháp khác nhau để tính toán các hệ số virial là cần 

thiết cho việc xây dựng các hàm thế tương tác phân tử và các kỹ thuật mô phỏng. 

Trong công trình này, chúng tôi sử dụng kết hợp kỹ thuật đa biến với mạng thần kinh 

nhân tạo để dự đoán các tham số của phương trình trạng thái virial từ các tính chất tới 

hạn của các hợp chất. Các kiến trúc của mạng thần kinh nhân tạo được xây dựng từ 

phương pháp phân tích thành phần chính và sử dụng để dự đoán các tham số trong 

phương trình trạng thái virial. Những kết quả nhận được từ các mạng thần kinh nhân 

tạo so sánh với dữ liệu thực nghiệm.  
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II. PHƢƠNG PHÁP TÍNH TOÁN 

1. Phƣơng trình trạng thái virial    

Trong khí quyển, các khí luôn kèm theo các tính chất nhiệt động học quan 

trọng liên quan đến trạng thái của chúng và hệ số virial là một tham số thể hiện khả 

năng tương tác của chúng. Các tính chất nhiệt động bao gồm áp suất tới hạn Pc, thể tích 

mol tới hạn Vc,m, và nhiệt độ tới hạn Tc, mà tại đó tỷ trọng của các pha lỏng và khí cùng 

tồn tại đồng nhất. Vì vậy, phương trình trạng thái của khí [[25],[26]] chính xác  

...//1/ 2  mmm VCVBRTpV
      

 (1) 

Trong đó R là hằng số khí 8,314 510 ± 0,000070 J K−1 mol−1; B và C là các hệ số 

virial bậc hai, bậc ba, <. Trong đó các hệ số virial bậc hai có thể được xác định bằng 

cách khớp các dữ liệu thực nghiệm ở các nhiệt độ khác nhau theo phương trình như 

sau:  

T

Kc
baTB

/
exp)molcm/()( 13

2 

      
 (2) 

Trong đó các tham số a, b, và c được cho ở vùng nhiệt độ T = 80K đến 1000K cho 

khí argon và 90K đến 573K cho CO. 

2. Phƣơng trình trạng thái  

Deiters đã xây dựng một phương trình trạng thái D1-EOS dựa trên lý thuyết 

chuỗi cầu cứng nhiễu loạn với mục đích sử dụng phương trình D1-EOS để tính nhiệt 

độ tới hạn, áp suất tới hạn và tỷ trọng của các thành phần tinh khiết [[22],[23]]. Deiters 

cũng đề xuất một phần mở rộng cho hỗn hợp bậc hai. Vì phương trình D1-EOS ban 

đầu được đề xuất bởi Deiters không thể lấy tích phân theo phép toán giải tích, Deiters 

đã thay một phần bằng một chuỗi đa thức. Ba tham số thành phần tinh khiết cần thiết 

cho phương trình trạng thái Deiters là: a, b và c. Trong nghiên cứu này, chúng tôi sử 

dụng phương trình trạng thái Deiters để tính các hệ số virial cho các khí tinh khiết Ar, 

N2, CO và Cl2, được biểu thị như sau: 
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Các tham số trạng thái cho thành phần tinh khiết: a
k



 

3. Xây dựng mạng thần kinh nhân tạo 

Mạng thần kinh nhân tạo (ANN) [[2],[21]] được sử dụng trong nghiên cứu này 

là một hệ kết nối, chuyển tiếp đầy đủ và được luyện bằng một thuật toán lan truyền 

ngược nhanh. Nó liên quan đến hai pha: một pha chuyển tiếp trong đó thông tin đầu 

vào ở lớp ngoài tại các nút đầu vào được truyền tới để tính toán tín hiệu thông tin đầu 

ra ở lớp xuất; và một pha ngược lại trong đó cho phép sửa đổi các cường độ kết nối 

được thực hiện dựa trên sự khác biệt giữa tín hiệu thông tin được tính toán và quan sát 

tại các điểm đầu ra trên lớp xuất. Mạng lan truyền ngược sử dụng quá trình luyện có 

giám sát và so sánh kết quả đầu ra của nó với các kết quả mục tiêu [[2],[21]]. Các lỗi 

được truyền lại qua hệ để điều chỉnh các trọng số trong mỗi lớp. Trong quá trình luyện 

mạng, cùng một tập hợp dữ liệu được xử lý nhiều lần thì các trọng số kết nối được tinh 

chỉnh qua mỗi lần. Trong quá trình luyện, sai số giữa đầu ra của mô hình và kết quả 

mục tiêu giảm dần và mô hình luyện được tối ưu mối quan hệ giữa lớp đầu vào và lớp 

đầu ra. Các quy tắc học được lưu lại để quá trình luyện lặp đi lặp lại nhằm giảm thiểu 

sai số. Cấu trúc mạng thần kinh trong nghiên cứu này chứa một mạng gồm một lớp 

đầu vào, một lớp ẩn và một lớp đầu ra. Cấu trúc mạng được biểu thị trong Hình 1. 

 

Hình 1. Cấu trúc mạng thần kinh ANN- PCA I(5)-HL(6)-O(3); kí hiệu: ○, các nơ ron ở lớp đầu 

vào, ẩn và đầu ra;  ●:  Các nút sai lệch chéo cho nơ ron lớp ẩn và lớp đầu ra. 

Các tham số tới hạn quan trọng Pc, Vc, Tc, TL và TU được lựa chọn và các hệ số 

thực nghiệm trong phương trình 2 được dùng cho xây dựng mạng thần kinh nhân tạo, 

được thể hiện trong Bảng 1. Các tham số này cũng phụ thuộc nhiều vào đặc tính của 

nhau [[26],[28]]. Do đó, chúng tôi thực hiện chuyển các tham số tới hạn sang dạng các 

thành phần chính PCn (n = 1 - 5) bằng cách sử dụng kỹ thuật phân tích thành phần 

chính tương ứng. Ngoài ra chúng tôi cũng chuyển các hệ số của phương trình virial 

 

a 

 

b 

 

c 
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PC2 
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PC4 

PC5 

Lớp 
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Lớp ẩn Lớp 
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sang dạng log(x) (với x = a, b, hoặc c). Những tham số này được sử dụng để xây dựng 

mạng thần kinh nhân tạo. 

Các dữ liệu trong Bảng 1, được chia thành dữ liệu luyện mạng gồm dữ liệu của 

các chất không bao gồm argon, nitơ, cacbon monoxit và clo. Nhóm kiểm tra có thể sử 

dụng các chất trong nhóm ngoại gồm argon, nitơ, cacbon monoxit và clo. Đây cũng là 

các chất nghiên cứu thuộc công trình này. 

Bảng 1. Dữ liệu ban đầu của các tính chất tới hạn Pc, Vc, Tc, TL và TU, và hệ số a, b và c [[26],[28]]. 

Các hợp chất Pc Vc Tc TL TU a b c 

NH3    11,35 72,50 405,50 273,00 573,00 44,30 23,60 766,60 

CS2  7,90 173,00 552,00 280,00 430,00 211,00 167,10 538,70 

N2O   7,25 97,40 309,60 200,00 423,00 180,70 114,80 305,40 

F2    5,22 66,00 144,30 80,00 300,00 71,40 48,00 165,00 

He   0,23 57,20 5,19 7,00 150,00 114,10 98,70 3,25 

H2     1,30 65,00 33,20 14,00 400,00 315,00 289,70 9,47 

HCl   8,31 81,00 324,70 190,00 480,00 57,70 37,80 495,90 

H2S   8,94 98,50 373,20 278,00 493,00 47,70 30,30 632,90 

Kr    5,50 91,20 209,40 110,00 700,00 189,60 148,00 145,30 

Ne    2,76 41,70 44,40 44,00 973,00 81,00 63,60 30,70 

NO    6,48 57,70 180,00 122,00 311,00 15,90 11,00 372,30 

O2    5,04 73,40 154,60 90,00 400,00 152,80 117,00 108,80 

SO2    7,88 122,00 430,80 265,00 473,00 134,40 72,50 606,50 

SF6  3,77 199,00 318,70 200,00 525,00 422,10 281,30 273,50 

UF6  4,66 250,00 505,80 321,00 469,00 540,50 380,90 445,00 

H2O    22,06 56,00 647,10 293,00 1248,00 33,00 15,20 1300,70 

Xe    5,84 118,00 289,70 160,00 650,00 245,60 190,90 200,20 

N2    3,39 89,50 126,20 75,00 700,00 185,40 141,80 88,70 

Ar     4,90 74,60 150,90 80,00 1024,00 154,20 119,30 105,10 

CO  3,50 93,10 132,90 90,00 573,00 202,60 154,20 94,20 

Cl2  7,98 124,00 416,90 360,00 700,00 201,90 131,80 409,90 

CO2      7,38 94,00 304,10 220,00 1100,00 137,60 87,70 325,70 

 

III. KẾT QUẢ VÀ THẢO LUẬN 

1. Phân tích thành phần chính 

Trong ma trận tương quan ở Bảng 2, dựa vào hệ số tương quan giữa các biến số 

để đánh giá chiều hướng và mức độ ảnh hưởng tương quan giữa các biến số. Có nhiều 

giá trị tương quan lớn hơn 0,3. Phân tích thành phần chính là một công cụ lựa chọn 

thích hợp để loại bỏ tính cộng tính tuyến tính của các biến số. Cũng từ Bảng 2, hệ tố 

tương quan có thể sử dụng để xây dựng vectơ riêng cho các thành phần chính.  
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Bảng 2. Ma trận tương quan giữa các tham số tới hạn Pc, Vc, Tc, TL, TU của các hợp chất 

 

Pc Vc Tc TL TU 

Pc 1 -0,087 0,778 0,650 0,476 

Vc -0,087 1 0,525 0,560 -0,162 

Tc 0,778 0,525 1 0,934 0,247 

TL 0,650 0,560 0,934 1 0,182 

TU 0,476 -0,162 0,247 0,182 1 

Phương pháp phân tích thành phần chính làm giảm tính phức tạp của dữ liệu 

và có thể giải thích quy luật của tập dữ liệu đa biến lớn mang lại các cấu trúc tuyến 

tính cơ bản, và có thể phát hiện các mối liên quan bất thường giữa các dữ liệu.  

Để xác định số lượng các thành phần chính được giữ lại, trước hết chúng ta 

phải chạy phân tích thành phần chính và sau đó tiến hành phân tích đánh giá dựa trên 

kết quả của nó. 

 

a) 

 

b) 

Hình 2: Đồ thị sườn dốc lựa chọn (a) và đồ thị kép (b) có lợi để xác định số lượng thành phần 

chính thích hợp trong không gian con 

Kết quả phân tích đánh giá cho thấy rằng sau khi có các giá trị riêng của ma 

trận tương quan, bốn thành phần chính đầu tiên giải thích 86% phương sai và các 

thành phần còn lại đều đóng góp 5% hoặc ít hơn. Vì vậy, bốn thành phần chính có thể 

được sử dụng để xem xét mối tương quan giữa các thành phần. 

Bảng 3. Dữ liệu thành phần chính tương ứng với các tính chất tới hạn PC, VC, TC, TL và TU, và các 

hệ số a, b và c chuyển đổi thành logarit [[26],[28],[29]]. 

Các chất  PC1 PC2 PC3 PC4 PC5 loga logb logc 

Nhóm luyện 

NH3    1,3347 0,5422 -0,9545 -0,2961 0,0328 1,6464 1,3729 2,8846 

CS2  1,9397 -1,4894 -0,1667 0,3041 -0,3271 2,3243 2,2230 2,7313 

N2O   0,2043 -0,3331 -0,6204 -0,0672 0,0137 2,2570 2,0599 2,4849 

F2    -1,4785 -0,1106 -0,8596 0,1898 0,0813 1,8537 1,6812 2,2175 

He    -3,0407 -0,6086 -0,7406 0,0196 -0,0732 2,0573 1,9943 0,5119 

H2     -2,5470 -0,0880 -0,1006 0,1090 -0,0435 2,4983 2,4619 0,9763 
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HCl   0,2701 0,1141 -0,7225 -0,0041 -0,0626 1,7612 1,5775 2,6954 

H2S   1,0744 -0,1913 -0,6825 -0,4012 0,0816 1,6785 1,4814 2,8013 

Kr    -0,6050 0,3816 0,3889 0,1762 -0,0101 2,2778 2,1703 2,1623 

Ne    -1,8598 1,5529 1,0834 -0,2686 -0,1016 1,9085 1,8035 1,4871 

NO    -1,0392 0,0557 -1,0860 -0,0135 0,0989 1,2014 1,0414 2,5709 

O2    -1,2877 -0,0265 -0,5117 0,1432 0,0672 2,1841 2,0682 2,0366 

SO2    1,1999 -0,6486 -0,4426 -0,1473 -0,1655 2,1284 1,8603 2,7828 

SF6  0,5162 -1,7685 0,9599 0,3376 0,2104 2,6254 2,4492 2,4370 

UF6  2,1190 -2,7576 0,9847 0,1819 0,0695 2,7328 2,5808 2,6484 

H2O    3,8622 3,0915 -0,4272 0,6556 0,0646 1,5185 1,1818 3,1142 

Xe    0,0750 -0,1647 0,3813 0,1626 -0,0432 2,3902 2,2808 2,3015 

Nhóm kiểm tra ngoại 

N2    -1,3057 0,3018 0,6544 0,1003 0,0273 2,2681 2,1517 1,9479 

Ar     -0,8545 1,3268 1,2413 0,0557 -0,0399 2,1881 2,0766 2,0216 

CO  -1,2749 -0,0398 0,3125 0,0667 0,0829 2,3066 2,1881 1,9741 

Cl2  1,8615 -0,3145 0,1232 -0,9036 0,0701 2,3051 2,1199 2,6127 

CO2      0,8360 1,1744 1,1853 -0,4010 -0,0336 2,1386 1,9430 2,5128 

Hình 2 là đồ thị sườn dốc trực quan cho phép xác định hiệu quả số lượng thành 

phần chính thích hợp, biểu diễn sự thay đổi độ dốc theo số thành phần như trên Hình 

2a. Ngoài ra số thành phần phụ thuộc vào điểm gấp “khuỷu tay” mà tại đó dựa vào 

các giá trị riêng còn lại tương đối nhỏ và tất cả có cùng kích thước để lựa chọn thành 

phần chính. Điểm này không thể hiện rõ trong đồ thị sườn dốc Hình 2a, nhưng chúng 

ta vẫn có thể kết luận điểm thứ tư là điểm gấp "khuỷu tay". Trong Hình 2b đồ thị mô tả 

sự thay đổi các thành phần liên quan PC1 và PC2 trong không gian bao gồm Pc, Tc, TL, 

Vc and TU. Bằng kỹ thuật phân tích thành phần chính đã chứng minh được các thành 

phần chính được chọn trong trường hợp này phù hợp với các tính chất nhiệt động của 

các hệ chất, năm thành phần chính đã được chọn một cách thích hợp, như được chỉ ra 

trong Hình 2.  

Các biến thành phần chính được xác định từ sự kết hợp tuyến tính của các biến 

ban đầu. Các thành phần chính được trích xuất từ các vectơ riêng cung cấp cho các hệ 

số của phương trình. Đồ thị kép được minh họa trong Hình 2b cho thấy cả trọng số và 

điểm số cho hai thành phần được lựa chọn song song. Nó có thể cho biết phép chiếu 

của một quan sát trên không gian con với các điểm số tương ứng. Nó cũng có thể tìm 

thấy tỷ lệ quan sát và các biến trong không gian con của hai thành phần ban đầu. Điều 

này cũng cho phép có thể kiểm tra được các thành phần khác nhau trên không gian 

con.  

Từ Bảng 1, dữ liệu hóa lý tương ứng với các hợp chất, chúng tôi tiến hành xác 

định thành phần chính tương ứng với tính chất hóa lý PC, VC, TC, TL và TU đối với nhóm 

luyện và nhóm kiểm tra. Các kết quả phân tích thành phần chính được đưa ra ở Bảng 

3, được sử dụng để luyện mạng thần kinh nhân tạo và đánh giá khả năng dự đoán của 

mạng thần kinh dựa vào các chất N2, Ar, CO, Cl2 và CO2 trong nhóm ngoại. 
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2. Xây dựng mạng thần kinh nhân tạo 

Kiến trúc mạng thần kinh nhân tạo I(5)-HL(6)-O(3) được thành lập với năm 

tham số đầu vào PC1, PC2, PC3, PC4 và PC5 của lớp đầu vào; với sáu nút của lớp ẩn 

HL(6) và ba tham số đầu ra loga, logb và logc của lớp đầu ra [[2],[20],[21]]. Hàm truyền 

trên các nút hình chữ S với thuật toán luyện mạng Levenberg-Marquardt và các tham 

số luyện mạng: momen 0,7; tỷ lệ học 0,7 được sử dụng để luyện mạng thần kinh ANN-

PCA. Các giá trị MSE = 0,001702; 0,0053802 và 0,0058694 cho các kết quả tương ứng với 

nút đầu ra loga, logb và logc, tương ứng thu được từ quá trình luyện mạng sau 5000 

vòng luyện. 

Bảng 4. So sánh kết quả hệ số tính toán (cal.) với giá trị gốc từ thực nghiệm (exp.) [[26],[28],[29]]. 

Các hệ số tính toán từ mạng I(5)-HL(6)-O(3) được phục hồi trở lại (recover) từ các giá trị logarit. 

 Các hệ số chuyển đổi 

Các khí               loga               logb                logc  

 

exp. cal. ARE% exp. cal. ARE% exp. cal. ARE% 

N2    2,268 2,269 0,044 2,152 2,142 0,437 1,948 1,944 0,2 

Ar     2,188 2,18 0,375 2,077 2,058 0,92 2,022 2,013 0,435 

CO  2,307 2,311 0,169 2,188 2,18 0,366 1,974 1,973 0,056 

Cl2  2,305 2,35 1,944 2,12 2,099 0,972 2,613 2,611 0,054 

CO2      2,139 2,17 1,454 1,943 1,987 2,244 2,513 2,51 0,127 

MARE, %     0,633     0,673     0,186 

 Các hệ số hồi phục 

Các khí a  b  c  

 

exp. recover ARE% exp. recover ARE% exp. recover ARE% 

N2    185,4 185,8 0,23 141,8 138,8 2,127 88,7 87,89 0,91 

Ar     154,2 151,3 1,869 119,3 114,2 4,306 105,1 103,0 2,014 

CO  202,6 204,4 0,902 154,2 151,4 1,818 94,2 93,97 0,248 

Cl2  201,9 223,8 10,87 131,8 125,7 4,63 409,9 408,6 0,312 

CO2      137,6 147,8 7,412 87,7 96,95 10,55 325,7 323,3 0,743 

MARE, %     3,467     3,22     0,871 

Các sai số được truyền ngược lại qua hệ thống để điều chỉnh các tham số trong 

mỗi lớp. Trong quá trình luyện mạng trên cùng một tập dữ liệu được xử lý nhiều lần vì 

trọng số kết nối đã được tinh chỉnh qua mỗi lần. Trong quá trình học, sai số lệch giữa 

đầu ra của mô hình mạng và đầu ra mong muốn giảm xuống dần theo quá trình luyện 

và được mô hình được kết nối tối ưu giữa đầu vào và đầu ra. Các quy tắc luyện được 

lưu lại để quá trình luyện lặp đi lặp lại trong quá trình luyện được giảm tối thiểu các 

sai số lỗi. Cấu trúc mạng thần kinh trong nghiên cứu này được biểu thị bằng một mạng 

lưới ba lớp, như đưa ra trong Hình 1. 

Mô hình mạng thần kinh ANN-PCA I(5)-HL(6)-O(3) được sử dụng để dự đoán 

các hệ số loga, logb và logc. Các giá trị dự đoán loga, logb và logc được phục hồi và so 

sánh với các tham số ban đầu, như được nêu trong Bảng 4. Các tham số loga, logb và 

logc nhận được từ mô hình ANN-PCA I(5)-HL(6)-O(3) được so sánh với các giá trị 
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được chuyển đổi từ tham số thực nghiệm, như được đưa ra trong Bảng 4. So sánh này 

không chỉ cho biết độ lớn của các giá trị sai số MARE,% đối với các giá trị được chuyển 

đổi và dự đoán loga, logb và logc; mà còn được sử dụng cho cả dữ liệu gốc thực 

nghiệm và giá trị phục hồi. Đây là những giá trị đo lường mức độ tin cậy và và độ 

chính xác của các phép tính, đã khẳng định các kết quả tính toán phù hợp với thực 

nghiệm và nằm trong khoảng không chắc chắn của thực nghiệm. 

 

Hình 3: So sánh hệ số virial bậc hai của các chất khí được tính bằng mạng ANN-PCA I(5)-

HL(6)-O(3), phương trình trạng thái virial (2) *25+, phương trình trạng thái Deiters D1-EOS [24], 

và thực nghiệm, Exp. được lấy từ *25,26+. a) argon; b) khí N2; c) khí CO; d) khí Cl2. 

Các giá trị sai số MARE, % cho các tham số được tính bởi công thức sau: 
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Trong đó các giá trị xexp. và xcal. là các giá trị chuyển đổi logarit loga, logb và logc 
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áp dụng tương tự cho dữ liệu thực nghiệm ban đầu và dữ liệu phục hồi.  

Các dữ liệu phục hồi được sử dụng để tính toán các hệ số virial bậc hai cho khí 

argon, N2, CO và Cl2 được thể hiện trong Hình 3. Trong quá trình luyện mạng thần 

kinh nhân tạo ANN-PCA I(5)-HL(6)-O(3) đã được đánh giá chéo bằng cách sử dụng kỹ 
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thuật loại bỏ từng trường hợp. Mô hình ANN-PCA I(5)-HL(6)-O(3) này thể hiện khả 

năng dự đoán tốt cho các tham số chuyển đổi loga, logb và logc. 

Các tham số chuyển đổi loga, logb và logc được sử dụng để phục hồi lại hệ số 

dạng ban đầu trong phương trình virial (2), như được đưa ra trong Bảng 4. Phương 

pháp phân tích phương sai một yếu tố [[27]] cũng được sử dụng để xác nhận các giá trị 

dự đoán của loga (F = 0,089 < F0,05 = 5,318), đối với logb (F = 0,00024 < F0,05 = 5,987), đối 

với logc (F = 0,00024 < F0,05 = 5,987); mà còn phục hồi dữ liệu cho các tham số a (F = 0,094 

< F0,05 = 5,987), đối với tham số b (F = 0,0044 < F0,05 = 5,987) và đối với tham số c (F = 

0,0002 < F0,05 = 5,987). Điều này cho thấy sự khác biệt giữa khả năng dự báo của mô 

hình ANN-PCA I(5)-HL(6)-O(3) và các giá trị thực tế là không đáng kể. Vì vậy, mô 

hình mạng thần kinh ANN-PCA I(5)-HL(6)-O(3) có thể được sử dụng để đánh giá các 

tham số a, b, và c của phương trình trạng thái virial (2).  

3. Dự đoán hệ số virial  

Các hệ số virial của khí argon, N2, CO và Cl2 thu được từ quá trình tính toán 

bằng phương trình trạng thái virial (2) [[25]] sử dụng các hệ số a, b và c dự đoán trong 

Bảng 4. Các hệ số virial này cũng được tính bằng cách sử dụng phương trình trạng thái 

Deiters D1-EOS [[24]]. Các kết quả nhận được, so sánh với nhau và với dữ liệu thực 

nghiệm [[25],[26]], nhận thấy các hệ số virial bậc hai của các chất khí tính toán từ các 

phương pháp trong công trình này rất gần với dữ liệu thực nghiệm [[25],[26]] và với 

kết quả tính toán từ phương trình trạng thái Deiters, đã được mô tả ở Hình 3. Sự khác 

biệt giữa các kết quả tính toán và dữ liệu thực nghiệm là không đáng kể. Các hệ số 

virial tương tác bậc hai được tạo ra nằm trong vùng không chắc chắn của các phép đo 

thực nghiệm. 

 

IV. KẾT LUẬN 

Nghiên cứu này bước đầu mô tả thành công mối quan hệ giữa các tham số 

nhiệt động học tới hạn của các khí bằng phương pháp phân tích thành phần chính kết 

hợp sử dụng mạng thần kinh ANN-PCA I(5)-HL(6)-O(3). Kiểu kiến trúc mạng được 

xây dựng bằng cách sử dụng kỹ thuật phân tích thành phần chính nhằm nâng cao chất 

lượng mô hình và chất lượng dự đoán các hệ số loga, logb và logc trong phương trình 

trạng thái. Sau đó các dữ liệu được tái tạo lại dữ liệu định dạng ở dạng hệ số trong 

phương trình đã đạt chất lượng dự đoán cao với sai số MARE% rất nhỏ. Công trình 

này cũng đã sử dụng thành công thuật toán di truyền để tìm kiếm cấu trúc mạng thần 

kinh tối ưu I(5)-HL(6)-O(3) đáp ứng khả năng ứng dụng thực tế. Kỹ thuật này có thể 

cho phép hứa hẹn trong tương lai sử dụng để thành các mô hình mới theo cách này và 

đánh giá dữ liệu nhiệt động học của các hệ khác nhau. 
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Các hệ số virial thu được từ mô hình ANN-PCA I(5)-HL(6)-O(3) khớp rất tốt 

với các hệ số từ phương trình trạng thái virial và phương trình trạng thái Deiters. 

Trong tương lai chúng có thể được sử dụng hỗ trợ dự đoán các tham số sigma và 

epsilon trong hàm thế Lennard-Jones của các hệ chất lỏng. Điều này có thể được sử 

dụng để dự đoán dữ liệu nhiệt động học của hệ cân bằng lỏng hơi bằng sử dụng cho 

mô phỏng Monte Carlo toàn cục. 
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ABSTRACT 

The gaseous components in the chemical industry usually contain of mainly gases 

such as argon, nitrogen, carbon monoxide and chlorine. The direct emission of 

these gases into the atmosphere should be limited by their impact on the 

environment. For its storage and separation, we should sufficiently know the 

intermolecular interaction and the second virial coefficients that characterize the 

interaction of molecules. The paper uses the neural network model combining the 
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principal component analysis ANN-PCA I(5)-HL(6)-O(3) with the MSE error value 

of 0.0069695 to predict the coefficients a, b and c in the virial state equation based 

on the critical properties of gases. Second virial coefficients are correctly 

determined using the predicted coefficients a, b, and c. The computed virial 

coefficients are very close to the predicted virial coefficients of the Deiter equation 

and appropriate to the experimental data.  

Keywords: ANN neural network, virial coefficients, virial state equation; principal 

component analysis. 
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